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Preferential Solvation. Effect on 
Polymer Di mensionst 

A. DONDOS 
Laboratory of Physical Chemistry. University of Athens, Athens, Greece 

and 

H. BENOIT 
Centre de Recherches sur les MacromoMcules (CNRS),  67083 Strasbourg, France 

(Kecrired Ailgrist 20, 1973) 

In this paper we discuss the light scattering theory of preferential solvation. We also present a 
more recent theory predicting a preferential solvation dependence on polymer molecular 
weight. These theories have been confirmed by the experimental results of the present work. 
It was established that the polymer coil dimensions depend on the local solvent composition 
and not on the analytical one. The local solvent composition can be calculated, in certain 
cases, from the value of the preferential solvation coefficient. 

1 INTRODUCTION 

Many researchers have studied polymers in binary solvent systems from both 
theoretical and phenomenological point of view. Their published works 
concern either the dimensions of macromolecules in  solution,l-s or the 
preferential solvation of one component of the solvent system into the macro- 
molecular coil.6-12 The present communication connects these two areas of 
investigation, namely the preferential solvation and the dimensions of the 
macromolecule. Our objective is to explain the experimentally measured 
dimensions of the macromolecules dissolved in a binary system, based not only 
on the thermodynamic parameters of the two components of the solvent, but 
also on the preferential solvation which takes place in such systems. 

The most important methods of investigating the preferential solvation are 

?Presented at the Midland Macromolecular Meeting on “Order in Polymer Solutions”, 
August 20-24, 1973. 
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176 A. DONDOS AND H. BENO~T 

proton relaxation,1"14 differential refractometryllJ5J6 and light scattering.'# 
10312 In our present work, the experimental results were derived from light 
scattering measurements. The dimensions of macromolecular chains will be 
expressed in terms of intrinsic viscosity [7] throughout this work ([7] in cm3lg). 

In the second part, a brief review of the theory of the light scattering of 
polymers dissolved in a binary solvent system and the relation between the 
preferential solvation and the polymer dimensions will be given. In the third 
part we shall present some experimental results confirming the theoretical 
predictions. 

2 THEORETICAL 

2.1 Light scattering in ternary systems polymer-two solvents 

The Debye's molecular theory17 which treats the situation in binary systems 
(one polymer in one solvent) gives the following well-known equation for the 
difference of the Rayleigh ratios R - Ro between the solution and the pure 
solvent (for the scattering angle 90") 

R - RQ = 8(7~/A)~ N p 2 / E 2  (1) 

where X is the wavelength of the incident light, E the electric field of the incident 
beam, p is the dipole moment of the macromolecule which behaves as a dipole 
under the influence of the above field and N is the number of molecules of the 
solute per unit volume. 

For a dilute solution of the polymer we have 

p = ( P  - Po)/N (2) 

where P and PO are the polarization of the solution and pure solvent, 
respectively. According to the Maxwell's theory we get 

p (4nN)-l(A2 - Ao2)E (3) 

where fi  and A0 are the refractive indices of the solution and pure solvent, 
respectively. Combination of Eqs. ( I )  and (3) gives 

R - Ro = $ ~ T ~ ( A  - n " ~ ) ~ ( i i  + A o ) ~ / ( N A ~ )  

Assuming that A f n"0 z 2Ao and A - f i o  N" c(dA/dc) where c is the polymer 
concentration and dA/dc the refractive index increment of the solution, the 
above relation becomes 

R - Ro = 2 7 ~ ~ i i o ~ ~ ~ ( d A / d ~ ) ~ / ( N h ~ )  
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PREFERENTIAL SOLVATION 177 

SinceclN = M / N A  where NA is the Avogadro number and M is the molecular 
weight of the polymer, we get 

The above relation which holds for the binary systems has been modified by 
Strazielle and Benoit7 in 1961 to be applicable also for ternary systems (one 
polymer-two solvents). 

Let us suppose that during the dissolution of a polymer in a mixture of two 
solvents, y1 molecules of the solvent I are absorbed in excess per macro- 
molecular chain. These y l  molecules should correspond to yz molecules of the 
solvent 2 which move away from the chain, so we shall have 

y1 Vl = ye V!2 ( 5 )  

where v1 and rz are the partial molar volumes of the solvent 1 and 2, 
respectively . 

If the initial composition of the mixture of the solvents (at7alyticul com- 
position) is N1 molecules of the solvent 1 and Nz molecules of the solvent 2 
per cm3, the polarization PO of the solvent should be equal to 

The above relation, however, holds only in the case where there is no 
preferential solvation. If we take now into account the preferential solvation, 
the scattering heterogeneity will no longer consist of the dissolved molecule 
alone, but of this molecule with the y l  absorbed niolecules 1 and the yz removed 
molecules 2. So the polarization of the solvent will be given not by the relation 
(6) but by the following formula: 

Po’ = (Ni  - y1’)pl + (N2 + ya’)pz 

where 71’ and yz’ are the number of molecules of solvents I and 2 per u n i t  
volume, respectively, which are coupled with the polymer or taken away from 
the polymer. In  the case of two solvents, Eq. (2) becomes 

p‘ = (P - NIP1 - Nzpz -1- y1‘pl ~ ~ ’ p 2 ) / N  

Finally, from Eq. (7) and relations yl‘/N = y~ and yz‘/N : y:! we get 

p’ = p $- ylpl - y2pe ( 8) 

We notice that Eq. (8) gives correctly the dipole moment of the macromolecule 
even in the case of a mixed solvent showing no preferential solvation. 

The difference of the Rayleigh ratios is now obtained by substituting p’ of 
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178 A.  DONDOS AND H. BENO~T 

Eq. (8) for p in Eq. ( I ) ,  also using Eqs. (3) and (5) and the aforementioned 
approximations 

We note again that f i0  is the refractive index of the mixture of the two solvents. 
For this mixture we have 

(Ao2 - l)E = 4n(Nlpl -1 N 2 ~ 2 )  

or, after differentiation 

2ZodfioE = 4v(pldNl + pzdNz) (10) 

Assuming now that the change of composition of the solvent mixture in the 
vicinity of the macromolecular chain proceeds without any change in volume, 
we also have 

dN1 = -dN2 P 2  

This relation combined with Eq. (10) yields the following equation 

2iio(diio/dN1) = 4nE-'(pl - p2 TI/ V z )  

which can be used to eliminate the dipole momentspl andpz from Eq. (9): 

I f  the number of molecules N1 is expressed in terms of the volume fraction $1, 
NI = $ ~ N A / ~ I ,  the above relation becomes 

where diio/d$l is the change of the refractive index of the mixture of the two 
solvents caused by a change in the composition 4 1  of the mixture. 

To compare Eq. (12) with the relation (4) which gives the molecular weight 
of the polymer in the case of a single solvent, we can write Eq. (12) as 

where 

is the apparent molecular weight of the polymer determined in the solvent 
mixture. 

Defining the coefficient of preferential solvation A' as 

A' = y l P l / M  (15) 
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PREFERENTIAL SOLVATION 179 

we get 

The coefficient of preferential solvation A'  represents the excess volume of 
solvent 1 which has been absorbed per unit mass of the polymer. Knowing the 
actual molecular weight of the polymer M ,  the coefficient of preferential 
solvation can be calculated from Map* determined in the mixture of the two 
solvents using relation (16). 

The basic relation in the work of Strazielle and Benoit [Eq. (1  1) of this 
paper] is similar to the equation proposed by Ewart et a1.6 However, Strazielle 
and Benoit give a more precise signification of the coefficient of the preferential 
solvat ion. 

It is obvious that the usefulness of Eq. (16) for the determination of prefer- 
ential solvation is restricted to the mixtures of solvents having different 
refractive indices, so that dfio/d#l # 0. 

2.2 Dependence  of t h e  preferent ia l  solvat ion o n  t h e  molecular  
w e i g h t  

Many published studies on the preferential solvation of polymers dissolved in 
a binary solvent system do not show any dependence of preferential solvation 
on the molecular weight of the polymer. We mention the work of Strazielle and 
Benoit' and the work of Okita and co-workers.16 This lack of dependence can 
be explained today by the fact that the polymer samples used in these studies 
did not have a low enough molecular weight. As we shall see later, this depend- 
ence becomes experimentally detectable only for molecular weights lower than 
50,000. 

Assuming that the preferential solvation concerns only the immediate 
vicinity of the chain-and this assumption was made by many researchers-it 
is difficult to explain the dependence of the preferential solvation on the 
polymer molecular weight. However, it has been shown'* that, near the theta 
conditions, the preferential solvation concerns the whole volume occupied by 
the polymer coil. Inside this volume, the local composition of the solvent 
system is different from the initial composition before the polymer was added, 
referred to as the analytical composition or hulk composition. This bulk 
composition can be assumed as representing the composition of the binary 
solvent system in the space between the macromolecular coils. The difference 
between the local and the bulk composition which is due to the preferential 
solvation, justifies a concept of two theta conditions: the inter- and intra- 
molecular theta conditions. When, for a given bulk composition, the second 
virial coefficient becomes zero, the macromolecular chains exhibit an expan- 
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1x0 A. DONDOS AND H .  B E N O ~ T  

sion coefficient Q greater than unity. This is a consequence of the fact that 
inside the polymer coil, the local composition is richer in “good” solvent. 

As mentioned before, this phenomenon is observed near the theta-point 
where the number of repeat units per uni t  volume is relatively high. This led us 
to the investigation of the effect of repeat-unit density, p, on the preferential 
solvation. As it is known, this density p changes with the molecular weight and 
it becomes very high for the low molecular weight chains. 

The mean coefficient of preferential solvation (A’) is calculated as a normal- 
ized sum of all preferential solvation coefficients for each repeat unit*” 

x 
6 

(A‘) = ( I /X) ( A’dx (17) 

where Xis the total number of repeat units in the chain. It is also considered 
that the preferential solvation coefficient A’ depends on the repeat-unit density 
p and this dependence is expressed by the following relation 

(18:l 

where A’, represents the value of preferential solvation coefficient for an 
infinite chain, and a is a constant. Consequently, the mean experimental value 
of the coefficient is given by 

A’ = A’, 4.- ap 

x x 
0 b 

<A’) = (l/X)l(A’, +ap)d.v = A’, -I-(a/X)lpd.v (19) 

Assuming that the distribution of repeat-unit density around the niacro- 
molecular coil center of mass is gaussianlg 

p = X ( 3 / 2 ~ r ( R ~ ) ) ) ~ 1 ~  exp( - 3 r 2 / 2 ( R 2 ) )  i20) 

where Y is the distance from the center of mass and ( R z )  the mean square 
radius of gyration, the integration along the chain, Eq. ( 19), can be replaced b:y 
a weighted integration over the volume 

(A’) = A‘, -t ( a / X > J . / J ‘ p W  

Substituting p from Eq. (20), we obtain, after integration 

Knowing that 

where h is the length of a repeat unit  and a the expansion coefficient, we obtaijn 

(A’) = A r m  + a(3/4n)3’2 X(R“3” 

(R‘) = h2Xa2 

(A’) = A‘, +a(3/4nb2)312/(Xta3) 

Rut Xis proportional to the molecular weight, so we have: 

(A’) = A’m +AM-*& 
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PREFERENTIAL SOLVATION 181 

Near the theta point where n E I ,  the above relation becomes 

< A ’ >  = A f m  + A M - $  (21) 

This is the relation between the preferential solvation coefficient ( A ’ )  and the 
molecular weight near the theta point. 

Evidently, a plot of <A’)M versus M 4 should give a straight line, according 
to the above theoretical relation (21). As we will see later, this is indeed the 
case in  many polymer-binary solvent systems. 

Read8 as well as Zivny, Pouch19 and ~ o l c ~ ~  predicted theoretically the 
dependence of the preferential solvation on the molecular weight. Since these 
authors investigated experimentally only high molecular weight polymers and 
did not find any  dependence of ( A ’  on the molecular weight they dismissed 
the molecular weight dependent term as unimportant. 

2.3 Preferential  solvat ion e f f ec t  on molecular  d imens ions  

As we have seen, the preferential solvation changes the binary solvent coni- 
position in the vicinity of the macromolecular chain, and in certain cases, this 
change in composition affects the entire volume of the random polymer coil. 
It was judged worth studying the effect of solvent composition on the macro- 
molecular dimensions. 

Theoretically, the preferential solvation can affect the molecular dimensions 
in the following ways: 

a) First of all, the change of the solvent composition in the vicinity of the 
polymer chain must affect the unperturbed dimensions of the chain. The 
environment of the repeat units of the chain is the local composition of the 
solvent, as it is dictated by the preferential solvation, and this composition is 
different from the analytical or bulk composition.zl (We assume now that the 
change of solvent composition concerns only the vicinity of polymer chains.) 

If the coefficient of preferential solvation is known, one can calculate the 
number ofexcess molecules of the solvent 1,yl ,  in the vicinity of the chain from 
Eq. (15). Consequently, one can also calculate the number yz of the molecules 
of the solvent 2 which have been displaced: from Eqs. (5) and ( I  5 ) ,  we have 

where X is the number of repeat units in the chain and wi is the molecular 
weight of a repeat unit. 

Let us call Z the number of molecules of solvent components per repeat unit  
of the chain. Along the chain and in the vicinity of the chain, the correct 
number of molecules of species 1 and 2 will be XZ.rl + y l  and XZxa - y2, 
where x1 and sg are the molar fractions of solvents 1 and 2, according to the 
analytical composition. Assuming now that the molar volumes Vl and p2 are 
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182 A. DONDOS AND H.  BENO~T 

sufficiently close (so that one can take the same value of Z for both solvents 
surrounding the chain), the actual molar fraction XI’ of solvent 1 in the vicinity 
of the chain is given by 

and, introducing Eq. (22), we obtain 

This equation gives the local composition of the solvent near the macro- 
molecular chain. If the binary solvent composition has any effect on the 
unperturbed dimensions, one should take into consideration not the analytical 
but the local composition as given by the above relation. The choice o f Z  value 
is of fundamental importance. For low values of Z one finds that, near the 
theta point, the chain is surrounded almost exclusively by good solvent 
molecules (XI’ -+ 1). As will be seen later, many experimental results point to 
the need of using the local composition given by Eq. (23) when determining 
the unperturbed dimensions, instead of the analytical composition. 

b) It is mentioned earlier that, near the theta point, the preferential solvation 
alters the composition of the solvent system throughout the entire volume 
“occupied” by the polymer coil. Under these conditions, the macromolecular 
dimensions, in general, are a function of the preferential solvation, because 
the latter determines the solvent composition inside the polymer coil. Quali- 
tatively we can state that, near the intermolecular theta point and for high 
preferential solvation of the good solvent, the polymer chain exhibits larger 
dimensions, as compared to the case of low preferential solvation. 

c) For relatively low molecular weight chains the preferential solvation is 
higher near the theta point, compared to  the high molecular weight chains, al I 
other factors being the same. Therefore one should expect a greater chair1 
expansion of the low molecular weight chains. This of course could not be so, ii’ 
the preferential solvation were independent of the molecular weight of tht: 
chain. 

d) Finally, the preferential solvation can affect the macromolecular 
dimensions even under conditions far away from the theta point. This is based 
on the assumption that when the thermal motion brings two distant repeat 
units of a chain close to each other, their interaction will be dominated only by 
the local solvent composition, even though these units may have travelled, 
prior to their encounter, through domains of different solvent composition. 
Therefore, through the change of local composition, the preferential solvation 
affects the long-distance interaction of the repeat units which, in  turn, affects 
the macromolecu lar dimensions. 
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PREFERENTIAL SOLVATION 183 

Our experimental results, presented below, are in agreement with these 
assumptions. 

3 EXPERIMENTAL RESULTS 

3.1 Dependence of the preferential solvation on the polymer 
molecular weight 

The coefficient of preferential solvation (A', was determined for some ternary 
systems.1° The determination was based on light scattering measurements as  
proposed by Strazielle and Benoit [Eq. (16)]. Here we present our results for 
the following two systems: (a) polystyrene/benzene/methanol; (b) polystyrene/ 
carbon tetrachloride/methanol. 

The light scattering measurements were performed at 25°C with a photo- 
goniodiffusimeter FICA. All polystyrene (PS) samples were prepared by 
anionic polymerization at - 7OCC, therefore we can assume that they contain 
only linear chains. Most of the samples were fractionated in order to bring the 
polydispersity index of all used samples below 1.2. 

The numerical data for the above two systems are reported in Ref. 10. 
Figure I represents the dependence of (A') as a function of molecular 

weight. The coefficient (A') decreases with increasing molecular weight down 
to a limit, corresponding to the molecular weight of approximately 100,000. 
Beyond this molecular weight, the value of coefficient (A') remains practically 
constant . 

In the same figure, the dependence of (A') is given also for non-theta con- 
ditions (mixture of two liquids, behaving as a good solvent). In this case we see 
that there is no increase of (A') for the low molecular weight fractions. This 
is in good agreement with the predictions of the theory, namely that the effect 
of the density p (number of repeat units per unit volume) on the preferential 
solvation becomes significant only for high p values, or near theta conditions. 

Figure 2 shows a plot of (X')M* as a function of M *  for the same three 
systems as in Figure 1 .  According to Eq. (21), the coordinate systems of 
Figure 2 must produce straight lines with the slope A'o3 and the intercept equal 
to the coefficient A .  We notice that the experimental points fall indeed on a 
straight line, confirming the proposed relation. Below a certain concentration 
in precipitant of the solvent-system (system behaving as a good solvent), there 
is no dependence of the preferential solvation on molecular weight and the 
experimental line passes through the origin. 

Figure 3 presents the variation of coefficient A for polystyrene in two solvent 
systems as a function of precipitant concentration. 

There is also another confirmation of the suggested relation between the 
preferential solvation and the density of repeat units, based on the study of 
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I84 A.  DONDOS AND H. B E N O ~ T  

09 - 

08 - 

-0- 0 5  

04 

__6_ 

0 
200.000 400,000 600.000 

FIGURE 1 The preferential solvation coefficient for polystyrene solutions at 25'C as a 
function of the molecular weight in the following solvent mixtures: ( 0 )  CCL-methanol 
79:21, ( I )  benzene-methanol 74.5:25.5, ( A )  CCL-methanol95:5. 

300-  

200- 

300- 

200-  

FIGURE 2 Application of Eq. (21) for polystyrene fractions in the following solverit 
mixtures : (A) benzene-methanol 74.5: 25.5, (B) CCIA-methanol 79: 21, (C) CCL-methanol 
9 5 : 5 .  
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PREFERENTIAL SOLVATION I85 

FIGURE 3 The coefficient A of Eq. (21) for polystyrene as a function of the precipitant 
content in thernixture,fortwosolvent niixtures:(.)CCl;l-methanol,( i 1 )  benzene-methanol. 

star-like polymer models. For these branched chains, we assume a higher p 
value than for the linear ones of the same molecular weight. Figure4 reproduces 
the results of Fran$oisZ2 confirming the expected higher value of ( A ' )  for a 
star-like polymer as compared to a linear polymer of the same molecular 
weight. 

I 
0 200 400 600 M'A 800 1000 

FIGURE 4 Application of Eq. (21) for polystyrene in the mixture benzene-methanol 
77.8: 22.2. ( 0) Linear polystyrene, ( 0 )  branched polystyrcne. 

3.2 Preferential solvation effect on polymer dimensions under 
theta conditions 

We have seen earlier, that the preferential solvation changes the composition 
of the solvent system inside the volume occupied by the polymer coil at, or 
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186 A.  DONDOS AND H .  BENOPT 
near, the theta point. The chain is embedded now in a solvent mixture, whose 
composition is determined by the preferential solvation and, in  general, this 
local composition is different from that of the original solvent mixture. 
Evidently, this local composition is richer in good solvent. The difference 
between local and analytical composition leads logically to the concept of two 
theta conditions: one, for which the chain expansion coefficient is equal to 
uni ty  (intramolecular theta conditions) and the other, for which the second 
virial coefficient is zero (intermolecular theta conditions). 

For a polymer in various binary solvent systems behaving as “inter- 
molecular” theta solvents, the chain expansion coefficient is the higher, the 
greater the preferential solvation. Elias et were the first to observe that, 
indeed, at the theta conditions, a polymer exhibits variable molecular dimen- 
sions, depending on the nature of solvent/precipitant system. The viscosity at 
theta conditions (A2 = 0) of the same polystyrene in benzene-methanol 
mixture was greater than that in dioxane-methanol mixture. Here i t  should be 
emphasized that in both cases the second virial coefficient A 2  was zero. Today, 
it is established that the preferential solvation of polystyrene in the first system 
is much larger than that for the second system.24 

A more systematic study18 has proven that in systems with A z  = 0, there is 
a direct relation between the solvation coefficient (A’) and the coefficient B of 
the Stockmayer-Fixman equation25 

As known, B expresses the long-range interactions of chain land it  is directly 
related to the expansion coefficient a. Figure 5 shows the relation between 

@) D o e r m n c -  methanel , 6 6 . 5  : 33.5 
@ O i o x a n c -  ihopropanol  , 51.5 ; 48.5 

@ C C 1 4  - h e p t a n c  , 5 3  : 4 7  

@ B e n z e n e -  i i o p r o p m n o l  , 61 : 39 
@ B e n z e n e  - m e t h a n o l  7 8  : 2 2  

c 

0 0,s (3’) 
FIGURE 5 The parameter B of Eq. (24) as a function of d‘ at the intermolecular theta 
point ( A 2  = 0). 
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PREFERENTIAL SOLVATION 187 

( A ’ )  and B for different systems. Apparently, in the absence of any preferential 
solvation ( ( A ’ )  = 0),  the analytical and local compositions are equal ; therefore, 
if A2 = 0, B should be zero too. 

3.3 Expansion of low molecular weight chains at the theta 
point 

From Figure 1 we see that the low molecular weight chains exhibit higher 
value for ( A ’ ) ,  compared to the high molecular weight chains under the same 
conditions. The above observation can explain the fact that for the low molecu- 
lar weight chains the expansion coefficient a is higher. 

For chains of the molecular weight more than 100,000, the coefficient ( A ’ )  
remains almost constant and the chain expansion must be the same for all 
fractions. Therefore, the Stockmayer-Fixman theory can be applied. In Figure 
6 we see that, indeed, the experimental points for the ternary systems A and B 
show a linear dependence in this region. However, for low molecular weight 
chains (M < 100,000) the experimental points are located above the lines and 
their deviation is the larger the smaller the molecular weight of polystyrene 
fractions. Comparison of Figures 1 and 6 shows clearly the existing relationship 
between the preferential solvation and the macromolecular dimensions. For 

8 
7 

4 00 600 8 00 2 00 
FIGURE 6 The Stockmayer-Fixman diagrams for polystyrene at 25°C in (A) benzene- 
methanol 74.5: 25.5, (B) CCI4-methanol 7 9 :  21, (C) CCI4-methanol 92.5: 7.5. 
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188 A .  DONDOS AND 1-1. BENOPT 

conditions farawayfroni the theta point(where(A') isthesame for all fractions) 
all the experimental points fall on the same line in the Stockmayer-Fixman 
diagram (Figure 6, system C). 

3.4 Influence of the preferential solvation on the unperturbed 
dimensions of polymers 

We have studied systematically the influence of the excess free energy of mixing 
of two solvents on the unperturbed dimensions of macromolecular chains 
dissolved in the mixture.ZfiJ7 I t  has been found that there is a direct relation 
between the unperturbed dimensions of the polymer, expressed by the coef- 
ficient K,, (K,) [7Io/M') determined i n  a mixture of two liquids, and the 
excess free energy AGE of this mixture. 

The unperturbed dimensions can be determined from the plot [VIM t 

against M 4, according to the equation given by the Stockmayer-Fixman 
theory [Eq. (24)]. In our case, we neglected the low molecular weight data 
deviating from the linear relationship due to higher values of (A') and used 
only the high molecular weight fractions for extrapolation, as indicated in 
Figure 6. This method has been checked by us as well as by other authors 
(see, c . g . ,  the paper by Tanaka et L I / . ~ ~ ) .  

For AG'< , 0, the KO value found is larger than the mean value obtained 
from K,, values for pure solvents. On the other hand ifAC" -: 0, the KO value is 
smaller than the mean value.3 

The increment of the determined unperturbed dimensions from the ideal 
value, obtained using the values determined in the pure solvents, is given by the 
difference A KO defined as a percent increment 

where 

K , ,  K,,1 and K,,.L are the values obtained in the solvent mixture and in the pure 
solvents 1 and 2, respectively, and $ j  are the volume fractions characterizing 
the composition of the solvent mixture. 

We have observed that the shape of the deviation of the unperturbed 
dimensions does not correspond to that ofAGE. In many cases when approach- 
ing the precipitation point of the polymer, we have noticed a decrease of KO in 
spite of the increase of A C E  corresponding to the analytical composition of the 
mixture. Many times it has been observed that at the precipitation point, the 
KO value becomes identical to that determined in the pure good solvent. 

We have already explained the discrepancy between the increment of the 
unperturbed dimensions and that of A C E  corresponding to the analytical 
composition.'ll We derived the above relation (23) giving the composition of 
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PREFERENTIAL SOLVATION 189 

mixture in the vicinity of the macromolecular chain (local composition) which 
is different from the original composition (analytical composition). 

As we have previously noticed the basic problem is the choice of the value of 
Z .  We have chosen the value Z = 3 which is in  a better agreement with our 
experimental data. According to the Tonipa’s calculations’g the value of 3 for 
Zis quite probable. Also the experimental results of Lange3u give the same value 
for Z .  Applying the relation (23) with Z = 3 and using the determined values 
of ( A ’ )  we are in a position to give a simple relation between A K o  and A C E .  
So, when we approach the theta point we obtain A K ,  x 0 and the relation (23) 
gives the mole fraction of the good solvent in the vicinity of the chain, to be 
nearly the unity. This means that the chain is surrounded only by the molecules 
of thegood solvent and thus thecoincidence of the K,, value at the precipitation 
point with that of pure solvent is obvious. 

If  we represent the variation of the value AK,, as function of AC” which 
corresponds to the local composition of the mixture of solvents we obtain a 
straight line which passes through the origin.2* Here we are giving only the 
results for the system polystyrene-benzene-methanol. 

Figure 7 shows the variation of K,, and ,A’ as a function of the analytical 
composition of the solvent mixture (mole fraction XI). Table I gives the values 

9 -  
K e  
8< 

7 -  
1 0.9 0.8 0.7 0.6 0.5 

m o l  f r a c t i o n  benz.  ~ x , )  

FIGURE 7 Dependence of KO and ( A ’ ;  for polystyrene solutions in benzene-methanol 
mixture on the analytical composition of the mixture. Reprinted from Ref. (21) by courtesy 
of the American Chemical Society, 

TABLE I 
Viscometric and preferential-sorption data for the system PS-benzenc-methanol 

XI‘‘ KO x lo2 AKoO/, <A‘> x-,’’J A G E  x,’(‘  A C E  

1 7.9 I I 
0.895 9.0 12.6 -0 0.895 115 0.895 115 
0.800 8.6 8.8 0.14 0.915 95 0.925 80 
0.620 8.25 4.4 0.37 0.930 80 0.960 50 
0.580 1.9 0 0.47 0.963 45 = I  0 

~~ - ~~ ~ 

‘I Analytical composition. 
* Local composition calculated from Eq. (23) with 2 

Local composition calculated from Eq. (23) with Z 
3 .  
2.8. 
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190 A.  DONDOS AND H. BENOPT 

of local compositions of the solvent mixture XI' for two values of Z (2 = 2.8, 
z = 3). 

Using the values of AGE corresponding to the local compositions of 
mixture31 we finally obtain the straight lines of Figure 8 which is a confirmation 
of the proposed equation (23). 

'5' 

206 
'@?~Gc(cal rno1-a) 

FIGURE 8 Relationship between the increment of &and dGE(corresponding to the local 
composition of the solvent mixture) for the system polystyrene-benzene-methanol and for 
two values of 2. 

3.5 Influence of the preferential solvation on the 
dimensions of polymers dissolved in a mixture of good 
solvents 

As we have mentioned in  the second section of this paper, the interactions 
between two remote segments of a chain dissolved in a mixture of two good 
solvents, are through the internal space of the coil which has the same solvent 
composition as the analytical one. On the contrary, when the two monomer 
units of the chain approach each other they are surrounded by mixed solvent 
of local composition which exists in the vicinity of the chain. Therefore the 
long-range interactions depend upon the local composition of the mixture and 
thus on the preferential solvation. 

A large number of experimental results show that in  many cases the dimen- 
sions of polymers, measured in a solvent mixture and expressed by the intrinsic 
viscosity [TI, are higher or lower than the weighted average value for the two 
pure solvents. This viscosity increment is related to the value of AGE of the 
solvent mixture, similarly as the increment of the unperturbed dimensions. 
Theory gives a relationship between the increment of the dimensions and the 
value AGE but the agreement between the theoretical predictions and the 
experimental results is only qualitative.3 Here, the deviations are expressed by 
the percent difference between the determined value of [T] in the mixture 
and the weighted average value. 
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PREFERENTIAL SOLVATION 191 

Unfortunately, not only the absolute magnitude of the calculated deviations 
but also the shape of their composition dependence does not matLh the experi- 
mental data.32 Usually the maximum of the calculated curve, d[71cal (which is 
identical to the maximum of the A C E  dependence) does not coincide with the 
maximum of the experimental curve, d[771exp. This is clearly illustrated for the 
system polystyrene-cyclohexane-benzene in Figure 9 showing the solvent- 
composition dependence of (a) experimentally determined intrinsic viscosities 

25 

20 

A [rllmes 
15 

10 

5 

0 

60 

50 

40 

30 

20 

10 

0 

FIGURE 9 Dependence of [9]. d[71exp, d[qlcal and <A’) on the volume fraction 
benzene in the solvent mixture for the system polystyrene-benzene-cyclohexane at 35°C. 
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192 A .  DONDOS AND H. BENO~T 

[7], (b) viscosity increments d[7lexP computed from experimental data, (c) 
viscosity increments d[17]ral calculated from the A C E  data corresponding to  the 
analytical composition of the mixture.33 

As can be seen from Figure 9, the maximum of d [ ~ ] ~ ~ ~ ~  is shown by the 
mixture containing about 25 vol % benzene whereas the calculated curve, 
d[7],,1, exhibits a maximum at ~ 4 5  vol % benzene. This discrepancy can be 
explained by preferential solvation of the polystyrene chain by benzene7 which 
is indicated by curve din Figure 9. In  order to superimpose the curves d[71exp 
and L ~ [ & ~ I ,  the former one has to be shifted to compositions richer in benzene; 
and indeed, such a displacement can be accomplished by taking into account 
the values of the coefficient of preferential solvation (A’). In other words, when 
the analytical composition of the mixture is 25 vol % benzene, the local 
composition is richer in benzene because of the relatively large value of (A’) in 
this region. 

I n  conclusion we can say that the preferential solvation exerts an important 
influence on the dimensions of polymers dissolved in solvent mixtures. 
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DISCUSSION 

Dr. D. J. Meier (Midland Macroniolecular Institute, Midland, Michigan) : In 
the evaluation of intrinsic viscosities in  systems which show preferential 
solvation, is it necessary to take into account the local change in the viscosity 
of the medium resulting from the local change of composition? 

Prof. A. Dondos: That possible effect has not been taken into account. Never- 
theless, we shall try to analyze the problem to see if it is necessary, and, if so, 
the possible magnitude of the effect. 

Dr. D. J. Meier: Is the relationship A ’  = Am ‘ + up, which is used to determine 
(A’), an empirical relationship or is it based on other factors? 

Prof. A. Dondos: This relationship is considered to be semi-empirical 
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